Pedestrian Detection by Using a Spatio-Temporal Histogram of Oriented Gradients

نویسندگان

  • Chunsheng Hua
  • Yasushi Makihara
  • Yasushi Yagi
چکیده

In this paper, we propose a pedestrian detection algorithm based on both appearance and motion features to achieve high detection accuracy when applied to complex scenes. Here, a pedestrian’s appearance is described by a histogram of oriented spatial gradients, and his/her motion is represented by another histogram of temporal gradients computed from successive frames. Since pedestrians typically exhibit not only their human shapes but also unique human movements generated by their arms and legs, the proposed algorithm is particularly powerful in discriminating a pedestrian from a cluttered situation, where some background regions may appear to have human shapes, but their motion differs from human movement. Unlike the algorithm based on a co-occurrence feature descriptor where significant generalization errors may arise owing to the lack of extensive training samples to cover feature variations, the proposed algorithm describes the shape and motion as unique features. These features enable us to train a pedestrian detector in the form of a spatio-temporal histogram of oriented gradients using the AdaBoost algorithm with a relatively small training dataset, while still achieving excellent detection performance. We have confirmed the effectiveness of the proposed algorithm through experiments on several public datasets. key words: spatio-temporal gradients, AdaBoost, pedestrian detection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Search Algorithm for Large Video Database Using Hog Based Features

In this paper, we propose a novel fast video search algorithm for large video database. Histogram of Oriented Gradients (HOG) has been reported which can be reliably applied to object detection, especially pedestrian detection. We use HOG based features as a feature vector of a frame image in this study. Combined with active search, a temporal pruning algorithm, fast and robust video search can...

متن کامل

A Neural Network Approach to Pedestrian Detection

The paper presents an original approach for pedestrian detection using the neural network classifier called Concurrent Self-Organizing Maps (CSOM), previously introduced by first author; it represents a winner-takes-all collection of neural modules. The algorithm has the following stages: (a) feature selection using one of the three candidate techniques Histogram of Oriented Gradients (HOG)/1D ...

متن کامل

Pedestrian detection using HoG features

Human Detection in Images is a contemporary Computer Vision problem, still welcoming improved solutions. This subset area of object detection has seen many attempts made towards efficient implementation and in this project proposal we describe one based on Histogram of Oriented Gradients which proves to be superior than the rest in terms of both Detection rate and Error rate when using a Linear...

متن کامل

Pedestrian Detection using a boosted cascade of Histogram of Oriented Gradients

Pedestrian detection has been an active area of research in recent years; its interest relies on the potential positive impact on quality of life of the related applications (surveillance systems, automotive safety, robotics, multimedia content analysis, assistive technology and advanced interactive interfaces, among others). The large variability of human appearances, poses and context conditi...

متن کامل

Concurrent Self-organizing Maps for Pedestrian Detection in Thermal Imagery

The paper presents an original approach for pedestrian detection in thermal imagery using Histogram of Oriented Gradients (HOG) for feature extraction and the neural network classifier called Concurrent Self-Organizing Maps (CSOM), previously introduced by first author. The proposed algorithm has the following main stages: (a) detection of the regions of interest (ROI); (b) feature selection us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-D  شماره 

صفحات  -

تاریخ انتشار 2013